Prostate Cancer Treatment: Abiraterone and Other Hormonal Therapies Being Studied

Share this content:
More studies are needed to define the role of intratumoral androgen production and mCRPC resistance to hormonal therapies, and to determine if inhibitors of other steroidogenesis enzymes can be synerg
More studies are needed to define the role of intratumoral androgen production and mCRPC resistance to hormonal therapies, and to determine if inhibitors of other steroidogenesis enzymes can be synerg

Though the number of available therapies has increased during recent years, men with metastatic castration-resistant prostate cancer (mCRPC) inevitably have disease progression due to acquired resistance to treatment.

“By understanding mechanisms of resistance to our current therapies, we will be better able to develop new strategies to combat resistance and improve quantity and quality of life,” Scott Tagawa, MD, MS, of Weill Cornell Medicine in New York, New York told Cancer Therapy Advisor. “This may come from new drugs, new combinations of existing drugs, or better biomarkers.”

CRPC develops when prostate cancer progresses despite castrate-levels of testosterone, which may be explained by continued androgen receptor (AR) signaling driving tumor growth.

There are multiple mechanisms that can promote AR signaling, including AR splice variants, AR amplification or overexpression, AR stabilization, overexpressed transcription factors, AR mutations, and alternate signaling pathways.

None of these mechanisms are possible, however, without continued androgen production, such as by intratumoral steroidogenesis.1

Intratumoral Steroidogenesis

“We know that men with undetectable serum levels of testosterone can have cancer growth and abiraterone can be effective in men with progressive cancer despite no detectable serum testosterone,” said Dr Tagawa, suggesting that another source of testosterone is promoting tumor growth.

Studies indicate that even after androgen-deprivation therapy (ADT) intratumoral androgen synthesis can reactivate the AR. Testosterone and dihydrotestosterone (DHT) are synthesized from weak androgens produced by the adrenal glands, as well as de novo synthesis from cholesterol, within the tumor.1

RELATED: Liquid Biopsy for Patients With Prostate Cancer May Determine Drug Treatment Response

This is consistent with studies demonstrating higher levels of intratumoral androgens among men with mCRPC compared with men with primary prostate cancer. Higher intratumoral expression of CYP17A1, AKR1C3, and 3ßHSD — enzymes involved in androgen synthesis — is also associated with intratumoral androgen levels.

Page 1 of 2

Related Resources

You must be a registered member of Cancer Therapy Advisor to post a comment.

Regimen and Drug Listings

GET FULL LISTINGS OF TREATMENT Regimens and Drug INFORMATION

Bone Cancer Regimens Drugs
Brain Cancer Regimens Drugs
Breast Cancer Regimens Drugs
Endocrine Cancer Regimens Drugs
Gastrointestinal Cancer Regimens Drugs
Gynecologic Cancer Regimens Drugs
Head and Neck Cancer Regimens Drugs
Hematologic Cancer Regimens Drugs
Lung Cancer Regimens Drugs
Other Cancers Regimens
Prostate Cancer Regimens Drugs
Rare Cancers Regimens
Renal Cell Carcinoma Regimens Drugs
Skin Cancer Regimens Drugs
Urologic Cancers Regimens Drugs

Sign Up for Free e-newsletters