Neurology Advisor: What do your recent findings add to our understanding of the cognitive impact of chemotherapy?

Dr Butterfield: In rodent studies, there are deficits in cognitive performance following administration of chemotherapeutic agents that do not reach the brain. Our laboratory and those of our University of Kentucky colleagues showed that there is significant elevation of free radical damage in rodent brain following administration of chemotherapy using doxorubicin, which does not enter the brain.4 Among oxidative damages found were decreased function of mitochondria associated with modification and dysfunction of a major free radical scavenger in brain mitochondria and with brain cell apoptosis.

Our research showed that when the gene for tumor necrosis factor-alpha (TNF-alpha) was deleted in rodents, such changes did not occur, including oxidative damage.4 Other brain changes were also prevented when this gene was deleted. We hypothesize that the systemic administration of free radical-associated chemotherapy agents leads to elevation of TNF-alpha that crosses the BBB by well-known mechanisms, and once in the brain leads to more TNF-alpha production with consequent death of neurons involving free radical damage. More research is needed to flesh out these mechanisms further, and that is the subject of an NCI grant obtained by myself and 2 of my colleagues here at University of Kentucky.

We also reported that treatment of the mice with an antibody to TNF-alpha prevented some of the underlying free radical damage to the brain, and treatment with the [US Food and Drug Administration-approved drug, MESNA, which does not interfere with cancer chemotherapy, prevented the cognitive dysfunction observed following doxorubicin administration.

Continue Reading

Related Articles

Dr Kolb: We showed that the presence of an implanted piece of human breast tumor in a mouse induced epigenetic changes in the brain, and these changes varied by area.2 Adding chemotherapy also induced epigenetic changes, which differed somewhat from those in animals that only had the tumor, and it appears that both tumors and chemotherapy alter molecular networks in the brain.

Neurology Advisor: What are the top takeaways or treatment implications you would like to convey to clinicians regarding this topic?

Dr Butterfield: Currently in the [United States], there are approximately 15 million cancer survivors,6expected to reach 18 million persons in the relatively near future. Most of these survivors would have been treated with chemotherapy as part of their cancer survival. While there is a large range of percentage of participants in CICI clinical studies reporting symptoms of “chemobrain,” the approximate average of this percentage is 30%, although some studies suggest much higher percent involvement in CICI. That means that, of the current 15 million American cancer survivors, at least 5 million would be expected to report some level of cognitive dysfunction — an enormous number that rivals that of some of the major age-related neurodegenerative disorders in this country.

Our studies in rodent models are providing new insights into potential molecular mechanisms and therapeutic targets to modulate and hopefully prevent symptoms of CICI. Considerably more research is needed to fully elucidate mechanisms of CICI, but we are highly encouraged by our findings to date.

Dr Kolb: It is likely that changes in cognition that are often reported by patients before a cancer diagnosis should be taken seriously as being a potential symptom of cancer. Very often such complaints are taken as evidence of depression, but this is not the only possibility.

Dr Horowitz: The first thing that clinicians should know is that CRCI, chemobrain, chemofog, or whatever you want to call it, is a real phenomenon. A wealth of evidence from patient reports, neuropsychological testing, and structural and functional brain imaging shows changes to brain function that can last months or years after chemotherapy. Not everyone gets CRCI. Some patients find that their problems clear up after therapy is complete, while others do not. Probably about a third of patients will experience cognitive impairments 6 months after therapy is complete. Some may experience lasting effects that can be measured years later. Older patients and those with lower cognitive reserve seem to be at greater risk for CRCI developing. Preexisting fatigue, depression, and anxiety can make things worse.

Patients should be prepared for this, as for any other potential late effect. I have heard from several cancer survivors that their clinicians ignored or denied the cognitive difficulties that they were experiencing — one said that his oncologist said he was “crazy.” That’s not helpful. If patients know what to expect and feel that their oncologist supports them, they will be better able to cope and more likely to stick to their treatment regimens.

In terms of treatments for CRCI, we do not really have a lot of options yet. A number of pharmacologic therapies have been tested, with limited success. At the moment, the best option is nonpharmacologic treatments, especially cognitive training programs.

Neurology Advisor: What should be the focus of future research on this topic?

Dr Butterfield: Under the aegis of the above-mentioned NCI funding, we will continue to investigate the role of oxidative damage and its biochemical and cognitive sequelae in the brain associated with chemotherapeutic agents that do not cross the BBB.  

Dr Kolb: The next step is to determine [whether] there are differences in the extent of cognitive change in people with tumors alone or tumors and chemotherapy. Then we need to determine [whether] treatments such as those used for people with neurologic diseases such as stroke would be effective. In our animal studies, we have shown that these agents can be effective in animals with exposure to doses of irradiation typical in cancer treatment, so we suspect that the same logic is sensible in laboratory animals and patients with chemobrain. Another possible treatment is the use of compounds to reduce neuroinflammation, even when the tumor is distal from the brain.

There is little known about the role of age in the study of chemotherapy-related side effects. The molecular changes in the brains of children, adolescents, and aging adults may be very different, as might the possible treatments.

Dr Horowitz: One important next step is determining the risk factors for CRCI, beyond age and cognitive reserve. There is some evidence that certain genetic factors (apolipoprotein E and catechol-O-methyltransferase) may confer vulnerability. Development of a biomarker for vulnerability to CRCI and/or its presence would be a big breakthrough.

In my division at NCI, we are promoting research to develop new ways of testing for CRCI. Current neuropsychological tests were originally developed to diagnose focal brain lesions and are less appropriate for the more diffuse problems faced by cancer survivors. Paradigms adopted from cognitive psychology and neuroscience may prove more sensitive.

And of course, we would like to have more effective countermeasures. It’s important to consider CRCI in the context of other, similar impairments, such as Alzheimer’s and other age-related dementias. They may have disparate causes, but better cognitive treatment plans may be able to help everyone.


  1. Gutmann DH. Clearing the fog surrounding chemobrain. Cell.2019;176(1-2):2-4.
  2. Kovalchuk A, Kolb B. Chemo brain: From discerning mechanisms to lifting the brain fog—an aging connection. Cell Cycle. 2017;16(14):1345-1349.
  3. Horowitz TS, Suls J, Treviño M. A call for a neuroscience approach to cancer-related cognitive impairment. Trends Neurosci.2018;41(8):493-496.
  4. Keeney JTR, Ren X, Warrier G, et al. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget.2018;9(54):30324-30339.
  5. Bernstein LJ, McCreath GA, Nyhof-Young J, Dissanayake D, Rich JB. A brief psychoeducational intervention improves memory contentment in breast cancer survivors with cognitive concerns: results of a single-arm prospective studySupport Care Cancer. 2018;26(8):2851-2859.
  6. American Cancer Society. Cancer Treatment & Survivorship Facts & Figures 2016-2017. 2016. Accessed February 20, 2019.